很多人說大數(shù)據(jù)簡單的就可以理解為是海量的數(shù)據(jù),其實這么說是沒有錯的。但是大數(shù)據(jù)書的概念是指一段時間內(nèi)傳統(tǒng)軟件工具無法爬網(wǎng),管理和處理的數(shù)據(jù)集合。大數(shù)據(jù)技術(shù)是指能夠從各種類型的數(shù)據(jù)中快速獲取有價值的信息的能力。那么大數(shù)據(jù)都包含哪些內(nèi)容?大數(shù)據(jù)技術(shù)包括數(shù)據(jù)收集、數(shù)據(jù)存取、基礎(chǔ)架構(gòu)、數(shù)據(jù)處理、統(tǒng)計分析、數(shù)據(jù)挖掘、模型預(yù)測、結(jié)果呈現(xiàn)。
1、數(shù)據(jù)收集:在大數(shù)據(jù)的生命周期中,數(shù)據(jù)采集處于第一個環(huán)節(jié)。根據(jù)MapReduce產(chǎn)生數(shù)據(jù)的應(yīng)用系統(tǒng)分類,大數(shù)據(jù)的采集主要有4種來源:管理信息系統(tǒng)、Web信息系統(tǒng)、物理信息系統(tǒng)、科學(xué)實驗系統(tǒng)。
2、數(shù)據(jù)存取:大數(shù)據(jù)的存去采用不同的技術(shù)路線,大致可以分為3類。第1類主要面對的是大規(guī)模的結(jié)構(gòu)化數(shù)據(jù)。第2類主要面對的是半結(jié)構(gòu)化和非結(jié)構(gòu)化數(shù)據(jù)。第3類面對的是結(jié)構(gòu)化和非結(jié)構(gòu)化混合的大數(shù)據(jù)。
3、基礎(chǔ)架構(gòu):云存儲、分布式文件存儲等。
4、數(shù)據(jù)處理:對于采集到的不同的數(shù)據(jù)集,可能存在不同的結(jié)構(gòu)和模式,如文件、XML 樹、關(guān)系表等,表現(xiàn)為數(shù)據(jù)的異構(gòu)性。對多個異構(gòu)的數(shù)據(jù)集,需要做進一步集成處理或整合處理,將來自不同數(shù)據(jù)集的數(shù)據(jù)收集、整理、清洗、轉(zhuǎn)換后,生成到一個新的數(shù)據(jù)集,為后續(xù)查詢和分析處理提供統(tǒng)一的數(shù)據(jù)視圖。
5、統(tǒng)計分析:假設(shè)檢驗、顯著性檢驗、差異分析、相關(guān)分析、T檢驗、方差分析、卡方分析、偏相關(guān)分析、距離分析、回歸分析、簡單回歸分析、多元回歸分析、逐步回歸、回歸預(yù)測與殘差分析、嶺回歸、logistic回歸分析、曲線估計、因子分析、聚類分析、主成分分析、因子分析、快速聚類法與聚類法、判別分析、對應(yīng)分析、多元對應(yīng)分析(最優(yōu)尺度分析)、bootstrap技術(shù)等等。
6、數(shù)據(jù)挖掘:目前,還需要改進已有數(shù)據(jù)挖掘和機器學(xué)習(xí)技術(shù);開發(fā)數(shù)據(jù)網(wǎng)絡(luò)挖掘、特異群組挖掘、圖挖掘等新型數(shù)據(jù)挖掘技術(shù);突破基于對象的數(shù)據(jù)連接、相似性連接等大數(shù)據(jù)融合技術(shù);突破用戶興趣分析、網(wǎng)絡(luò)行為分析、情感語義分析等面向領(lǐng)域的大數(shù)據(jù)挖掘技術(shù)。
7、模型預(yù)測:預(yù)測模型、機器學(xué)習(xí)、建模仿真。
8、結(jié)果呈現(xiàn):云計算、標簽云、關(guān)系圖等。
對于大數(shù)據(jù)都包含哪些內(nèi)容的問題,通過上述閱讀,相信大家已經(jīng)知曉了吧,想了解更多關(guān)于大數(shù)據(jù)的信息,請繼續(xù)關(guān)注中培偉業(yè)。